Generalizability of time series forecasting models depends on the quality of model selection. Temporal cross validation (TCV) is a standard technique to perform model selection in forecasting tasks. TCV sequentially partitions the training time series into train and validation windows, and performs hyperparameter optmization (HPO) of the forecast model to select the model with the best validation performance. Model selection with TCV often leads to poor test performance when the test data distribution differs from that of the validation data. We propose a novel model selection method, H-Pro that exploits the data hierarchy often associated with a time series dataset. Generally, the aggregated data at the higher levels of the hierarchy show better predictability and more consistency compared to the bottom-level data which is more sparse and (sometimes) intermittent. H-Pro performs the HPO of the lowest-level student model based on the test proxy forecasts obtained from a set of teacher models at higher levels in the hierarchy. The consistency of the teachers' proxy forecasts help select better student models at the lowest-level. We perform extensive empirical studies on multiple datasets to validate the efficacy of the proposed method. H-Pro along with off-the-shelf forecasting models outperform existing state-of-the-art forecasting methods including the winning models of the M5 point-forecasting competition.
translated by 谷歌翻译
我们研究了改进的多臂匪徒(IMAB)问题,其中从手臂获得的奖励随着收到的拉力数量而增加。该模型为教育和就业等领域中的许多现实世界问题提供了优雅的抽象,在这种领域中,关于机会分配的决定可能会影响社区的未来能力以及它们之间的差异。在这种情况下,决策者必须考虑她的决策对未来奖励的影响,除了随时最大化其累积奖励的标准目标。在许多这些应用中,决策者的时间范围未知,这激发了在技术上更具挑战性的地平线环境中对IMAB问题的研究。我们研究了地平线 - 统一环境中两个看似相互冲突的目标之间产生的紧张:a)根据武器的当前奖励,在任何时候最大化累积奖励,b)确保具有更好的长期奖励的武器获得足够的机会即使他们最初的奖励很低。我们表明,令人惊讶的是,在这种情况下,这两个目标是相互对齐的。我们的主要贡献是对IMAB问题的任何时间算法,它可以获得最佳的累积奖励,同时确保武器在足够的时间内发挥其真正的潜力。由于缺乏机会,我们的算法减轻了最初的差异,并继续拉动手臂直到停止改善。我们通过证明a)imab问题的任何算法来证明我们的算法的最佳性,无论其功利主义,无论多么有效,都必须遭受$ \ omega(t)$政策后悔和$ \ omega(k)$竞争比率相对于最佳的比例离线政策和b)我们算法的竞争比率为$ O(k)$。
translated by 谷歌翻译
使用团队或机器人联盟的任务分配是机器人技术,计算机科学,运营研究和人工智能中最重要的问题之一。在最近的工作中,研究集中在处理复杂的目标和可行性限制之间,这是多机器人任务分配问题的其他变化。在这些方向上有许多重要的研究进展的例子。我们提出了任务分配问题的一般表述,该问题概括了几个经过充分研究的版本。我们的表述包括机器人,任务和其操作周围环境的状态。我们描述问题如何根据可行性约束,目标函数和动态变化信息的水平而变化。此外,我们讨论了有关该问题的现有解决方案方法,包括基于优化的方法和基于市场的方法。
translated by 谷歌翻译
随着虚拟助手变得越来越多样化和专业,对应用或特定品牌唤醒的需求也是如此。但是,通常用于训练尾流检测器的特定于唤醒特定的数据集是昂贵的。在本文中,我们探索了两种技术来利用声音建模数据,以提高大唱歌的语音识别,以改善专用的尾流探测器:转移学习和知识蒸馏。我们还探讨了这些技术如何与时间同步训练目标相互作用以提高检测潜伏期。实验显示在开源“嘿STHIPS”数据集中,并且内部远场数据集更具挑战性。使用大型声学模型中的电话同步目标和知识蒸馏,我们能够提高两个数据集的数据集尺寸的精度,同时降低延迟。
translated by 谷歌翻译
我们研究了智能电网中的级联故障,在该攻击者中,攻击者选择性地损害了节点,其概率与其学位成正比,之间或聚类系数。这意味着具有高度,中间或聚类系数的节点会以较高的概率攻击。我们通过数学和实验分析不同类型的目标攻击的网络巨大组件的大小,并将结果与​​随机攻击下的相应大小进行比较。我们表明,与随机攻击相比,网络对目标攻击的速度更快。对一小部分高级节点的有针对性攻击会分解一个或两个网络,而两个网络都包含用于随机攻击相同的节点的巨型组件。一个重要的观察结果是,如果攻击者根据节点的中间而不是基于程度或聚类系数损害了攻击者,则具有优势。我们下一步研究适应性攻击,攻击者会损害综合节点的节点。在这里,在每个回合中,有些节点是根据其程度,中间或聚类系数损害的,而不是将所有节点损害在一起。在这种情况下,在每回合开始之前,而不是在开始之前,计算了程度,中间或聚类系数。我们在实验上表明,与一次损害同样数量的节点相比,对手在这种适应性方法中具有优势。
translated by 谷歌翻译
大多数关于行人姿势估计的现有作品都不考虑估计被阻塞的行人的姿势,因为相关的汽车数据集中没有遮挡零件的注释。例如,在汽车场景中用于行人检测的众所周知的数据集Citypersons不提供姿势注释,而MS-Coco(一种非自动动物数据集)包含人体姿势估计。在这项工作中,我们提出了一个多任务框架,以通过检测和实例分割任务在这两个分布上执行。此后,编码器使用两个分布的行人实例使用无监督的实例级适应方法来学习姿势特定的特征。提出的框架改善了姿势估计,行人检测和实例分割的最新性能。
translated by 谷歌翻译
基于稳定性的概念,我们研究嘈杂随机迷你批量迭代算法的泛化界限。近年来,基于稳定性(Mou等,2018; Li等,2020)和信息理论方法(Mou等,2018)和信息理论方法(徐和Raginsky,2017; Negrea等,2019年; Steinke和Zakynthinou,2020; Haghifam等,2020)。在本文中,我们统一和基本上概括了基于稳定的泛化范围,并进行了三个技术进步。首先,我们在预期(不统一)稳定性方面绑定了一般噪声随机迭代算法(不一定梯度下降)的泛化误差。预期的稳定性又可以通过LE凸轮风格的偏差界定。与o(1 / \ sqrt {n})的许多现有范围不同,这种界限具有O(1 / n)样本依赖性。其次,我们介绍指数族族朗文动力学(EFLD),这是SGLD的大量概括,其允许与随机梯度下降(SGD)一起使用的指数家庭噪声。我们为一般EFLD算法建立基于数据相关的预期稳定性的泛化界。第三,我们考虑一个重要的特殊情况:EFLD的一个重要特殊情况:嘈杂的符号-SGD,它使用{-1,+ 1}的Bernoulli噪声扩展标志SGD。 EFLD的危识符号的泛化界限暗示了EFLD的暗示,我们还建立了算法的优化保证。此外,我们在基准数据集中呈现实证结果,以说明我们的界限与现有界限不上且定量。
translated by 谷歌翻译
远程感知的地理空间数据对于包括精确农业,城市规划,灾害监测和反应以及气候变化研究等应用至关重要。对于在类似的计算机视觉任务中的深度神经网络的成功和可用的远程感测图像的纯粹体积的情况下,深入学习方法尤为前接受了许多遥感任务。然而,数据收集方法的方差和地理空间元数据的处理使得深度学习方法的应用成为远程感测的数据不动性。例如,卫星图像通常包括超出红色,绿色和蓝色的额外光谱频带,并且必须连接到可以具有不同坐标系,界限和分辨率的其他地理空间数据源。为了帮助实现遥感应用的深度学习的潜力,我们介绍了一个Pythono库的Torchgeo,用于将地理空间数据集成到Pytorch深度学习生态系统中。 Torchgeo为各种基准数据集,用于通用地理空间数据源的可组合数据集,用于地理空间数据的采样器以及使用多光谱图像的转换的数据加载器。 Torchgeo也是第一个为多光谱卫星图像提供预先训练的模型的库(例如,使用Sentinel 2卫星的所有频段的模型),允许在下游遥感任务上传输学习,其中包含有限的标记数据。我们使用Torchgeo在现有数据集上创建可重复的基准结果,并将我们的建议方法用于直通预处理地理空间图像。 Torchgeo是开源的,可在GitHub上提供:https://github.com/microsoft/torchgeo。
translated by 谷歌翻译
功率分配是无线网络中的基本问题之一,并且各种算法从不同的角度来解决这个问题。这些算法中的一个共同元素是它们依赖于信道状态的估计,这可能因硬件缺陷,嘈杂的反馈系统和环境和对抗性障碍而不准确。因此,对于输入扰动,这些算法的输出功率分配至关重要,在输入扰动的范围内是界限的界限的界限的程度。在本文中,我们专注于UWMMSE - 一种利用图形神经网络的现代算法 - 并通过理论分析和经验验证说明了界限能量添加输入扰动的稳定性。
translated by 谷歌翻译
已经研究了几十年的上下文多武装匪,并适应了各种应用,如在线广告和个性化推荐。为了解决匪徒的开发探索权衡,有三种主要技术:epsilon - 贪婪,汤普森采样(TS)和上置信度(UCB)。在最近的文献中,线性上下窗匪徒采用了脊回归来估计奖励功能,并将其与TS或UCB策略结合起来的探索。但是,这行作品明确假设奖励基于ARM向量的线性函数,在现实世界数据集中可能不是真的。为了克服这一挑战,已经提出了一系列神经基的强盗算法,其中分配了神经网络以学习基础奖励功能,并且TS或UCB适于探索。在本文中,我们提出了一种具有新的探索策略的神经基匪徒方法。除了利用神经网络(开发网络)外学习奖励功能之外,与目前估计的奖励相比,EE-Net采用另一个神经网络(勘探网络)来自适应地学习潜在的增益。然后,构建决策者以将输出与剥削和探索网络组合起来。我们证明了EE-Net实现了$ \ mathcal {o}(\ sqrt {t \ log t})$后悔,它比现有最先进的神经强盗算法更紧密($ \ mathcal {o}(\基于UCB和TS的SQRT {T} \ log t)$。通过对四世界数据集的广泛实验,我们表明EE-Net优于现有的线性和神经匪徒的方法。
translated by 谷歌翻译